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FOREWORD

This document is one of two documents that constitute the

final report for Contract NAS8-28089, "Study of Viscous Mixing

Plume Flow Field." This study was performed by the Lockheed-

Huntsville Research & Engineering Center, Inc., for the National

Aeronautics & Space Administration, George C. Marshall Space

Flight Center, Alabama.

The other document is "Theory of Zone Radiometry," LMSC-

HREC D306101, January 1973.

The NASA Contracting Officer' s Representatives (COR) for

this contract are Dr. T. F. Greenwood and Mr. D. C. Seymour,

S&E-AERO-AT.
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NOMENCLATURE

scalar

vector

tensor

component of the tensor A in the coordinate
directions WNi, W Nj

component of the tensor A in the coordinate
directions Pi, P j

component of the vector A in the coordinate
direction Ui

component of the vector A in the coordinate
direction Vi

component of the tensor A in the coordinate
directions Wi, Wj

component of the tensor A in the coordinate
directions W Xi, Woj

matrix function of G

second-order tensor

antisymmetric, second-order tensor

symmetric, second-order tensor

direction cosines

components of D in the WA coordinate directions

tensor (Nth order)

eig envalue
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EBij (EAij)

EE

ei

-i
e

FBi (FAi)

F

FF

GC F

G

GA, GB

GI or G

gij

iJ

H, HS

I

M

MN

N

P

R

T

U

V

W

components of E E in the W B i, W B j (WAi, WA j)
coordinate directions

tensor (second-order)

indicial symbol for WNi

indicial symbol for WV'i

components of F F in the WBi (WAi) coordinate
direction

vector of an antisymmetric tensor

vector

cofactors of G

general-coordinate stretching function, also called
the metric tensor

general-coordinate metric tensors

inverse of G

indicial symbol for G ij

indicial symbol for G Ii j

eigenvectors

unit vector

transformation matrix

transformation matrix

transformation matrix

general coordinate base vector

position vector

second-order tensor

Cartesian-coordinate unit vector

orthogonal-coordinate unit vector

general-coordinate unit vector

v
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general-coordinate base vectors

general, contravariant-coordinate base vector

general, covariant-coordinate base vector

Cartesian-coordinate coordinate distance

indicial symbol for Zi

orthogonal-coordinate coordinate distance

general-coordinate coordinate distance

general-coordinate coordinate distances

general, contravariant-coordinate coordinate distance

general, covariant-coordinate coordinate distance

alternating tensor (third-order) (see Eq. 2.57)

angle between R and A

*i *i * * *i * *e *i *F * *i * *

Lower case letters identify particular components of scalars,
vectors and tensors

Section 3

A, B, C

B

Ci

D

E

F

G I

I

constants

Nth moment

any dependent variable on pages 3-12, 3-13;
constants elsewhere

rate-of-strain tensor

decay rate of turbulent energy

any variable in the blank, and it becomes the
fluctuating component of that variable

inverse of the metric G, (see Section 2)

unit tensor

vi
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WN

wX

x

xi

Y

Z

ZA, ZB

ZN
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turbulent kinetic energy per unit mass

length scales

any variable in the blank, and it becomes the
mean value of that variable

components of the variable named in blanks

in WN coordinates

components of the variable named in the blanks

in the W5 coordinates

pressure

position vector

temperature

Cartesian-coordinate base vector

velocity

vorticity vector

Cartesian-coordinate coordinate distance

lateral distance between two points on the velocity
profile

second coefficient of viscosity

Kronecker delta (see Eq. (3.13).)

eddy viscosity

alternating tensor (third-order) (see Eq. (2.57))

time

viscosity

kinematic viscosity

density

pressure tensor

shear-stress tensor
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Section 4

A

C,C

L

N

P

Atm

U

V

Y

6

E

Pp

T

Subscripts

e,oo

i

o

<>

damping factor

constants

length scale

Van Driest mixing length

correlation parameter

pressure

thickness of the mixing region

velocity along mixing region

velocity normal to mixing region

lateral coordinate

boundary

eddy viscosity

molecular viscosity

,density

shear stress

centerline values

values in an undisturbed flow

inside

outside

denot e s

denotes

denotes

GENERAL

functionality

time average

vectors

viii
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denotes tensors

|I | absolute values

| Ill the determinant
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Section 1

INTRODUCTION AND SUMMARY

Much has been written concerning what is not known about turbulent mix-

ing. The important thing is that some things are known. Some experiments

have been performed and some calculation procedures have been developed. In-

compressible, parallel stream turbulent mixing has been experimentally studied

and can be accurately mathematically modeled. Afterburning within a rocket

plume and an injector element's combustion efficiency have not yet yeilded to

experimental technology or to analytical endeavor. The turbulence literature

of free shear layers lies between these two extremes - mostly on the side of the

first example.

Turbulent kinetic energy models are now a fashionable representation

of free shear layers. Their use does offer the potential for a significant ad-

vance in our understanding of turbulence, but this potential has not yet been

exploited. Furthermore, much of the importance of these models lies in their

tensor behavior. The mathematical foundations of such behavior is not well

documented anywhere. Studies to date have been made only on chemically

simple flows.

Much maligned eddy viscosity models are still the only ones which can

be used on combusting flows. Even these models have not been developed to

their full extent. For example, empirically determined lateral and stream-

wise variations could be used in an eddy viscosity formulation. (These vari-

ations would be similar in form to intermittency factors used for boundary

layers.) However, actual variations have not been satisfactorily determined

either by experiments or turbulent kinetic methods.

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER
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The purpose of this report is to give a basic description of the mathe-

matical tools and models which are presently used to represent turbulent, free

shear layers. In addition, several recommendations are made for ways in

which current modeling techniques can be improved.

1-2
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Section 2

MATHEMATICAL PRELIMINARIES

Before the laws which govern turbulent flows can be fully applied, one

must have a proper appreciation of tensor calculus, certain integral theorems

and averaging procedures, as well as an understanding of ordinary and partial

differential equations. The purpose of using tensor nomenclature is to ensure

that complex terms are properly modeled and to simplify coordinate trans -

formations; it also serves as a type of shorthand, but this is a trivial conse-

quence. Integral theorems are needed if several control volumes are to be

related. Averaging procedures are used to convert microscopic fluid prop-

erties to macroscopic ones.

This section presents the mathematical tools which are necessary to

perform fundamental flow analyses.

2.1 SPACES AND FIELDS

In fluid mechanics, one is interested in predicting the fluid properties

density, pressure, temperature, and composition, and the flow properties of

velocity and head as a function of position and time. Unfortunately, investi-

gators of other disciplines of interest to the fluid mechanicist, such as num-

erical analysis and statistical mechanics, have borrowed words to describe

phenomena of interest to themselves. Therefore terms like vectors, tensors,

coordinates, spaces, may have several meanings which are only loosely

connected.

Historically, geometry and algebra problems were solved before some

of the more complicated problems in factional analysis; hence, analogies

were made and terms "generalized." Since this occurrence has now been

perpetuated for several score years, the current mathematical literature

has become very lax in separating the real from the abstract. An individual's

2-1
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unguided initial readings in these subjects are bewildering because a proper

appreciation of the use of supposedly well-defined technical terms is lacking.

This section attempts to provide a reading guide for this subject.

First, a field is defined as a scalar, vector or tensor-dependent vari-

able which is evaluated over a region of space (call this "position" so "space"

can be given a different meaning later) and time. Clearly, position and time

are independent variables. Position is defined by three scalar components

measured in three coordinate directions. The coordinates need not be recti-

linear nor orthogonal. Certainly, the distance between two positions is de-

fined; this distance is said to be measurable by a "metric."

The ideas of fields have been generalized by analogy into a description

of a "function space" which may have any number of coordinates and which

may relate all, some, or none of these coordinates by a metric.

To make these definitions more meaningful, let us say that three di-

alects of vector and tensor calculus could be "spoken;" namely, those that

apply to a field which is completely specified by geometry, to a field which

is specified by geometry and time, and to a field which is specified by any

number of coordinates. These fields will be named: Geometric Fields, Un-

steady Fields, and Function Spaces, respectively. In Function Space the

coordinates may or may not be related by a metric, and furthermore, the

metric may or may not have geometric meaning.

The language used to describe each of these fields is defined in follow-

ing paragraphs and then arranged in a form such that it may, subsequently,

be used.

2.2 GEOMETRIC FIELDS

Physical laws must be independent of the units chosen to represent

physical quantities; hence, units in equations are carefully accounted for.

Physical laws must also be independent of the coordinates. There are three

types of geometric coordinate systems: orthogonal rectilinear, orthogonal

2-2
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curvilinear, and general curvilinear. In each of these systems a specific

set of rules is used to describe the relationship between flow properties and

geometrical position. These coordinate systems and these rules are de-

scribed in this section.

Certain types of quantities which appear in physical laws must be

classified, because they transform from one coordinate system to another

by different rules. These quantities are defined and illustrated with ex-

amples from fluid mechanics. The first of these is a scalar quantity, which

requires that magnitude only be specified. Examples are: mass, density,

energy, temperature, volume, pressure, time. The second of these is a

vector quantity which requires that a magnitude and a direction be specified.

In fluid mechanics, three scalar values associated with convenient orthogonal

directions are usually employed to specify a vector. Examples of vectors

are: velocity, momentum, acceleration and force.

There are more complicated quantities which require that a larger

number of scalar quantities be specified. These quantities are called

tensors, a very general term which may be applied to quantities of any degree

of complexity. Thus, a tensor of the "zero-order" ("zero-rank") means that

3 scalars must be specified -this is our "scalar" for a three-dimensional

space. A tensor of the first-order means that 31 scalars must be specified

as our "vectors." A second-order tensor requires that 32, nine scalars be

specified. A third-order tensor requires that 27 scalar components be speci-

fied. This is the highest order tensor usually necessary in fluid mechanics.

A second-order tensor requires that a magnitude and two directions be

specified. In describing the relationship between force, area, and stress,

the force-vector was described by a magnitude and direction. To describe

stress, the direction between the area over which the stress acts as well as

the force must be specified. Examples of second-order tensors are: stress,

rate-of-strain, momentum-flux, mass moment of inertia.

2-3
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A geometric field is a distribution of scalar,vector, or tensor quantities

described by functions of space coordinates. The nomenclature for making

such a description is now to be established.

In general, upper case letters denote variable names. Sometimes more

than one letter is used to name a variable. Lower case letters and numbers

indicate particular components of a variable. Indicial notation was avoided

because it is difficult to type and to write on a blackboard. The capital letter

system introduced herein is designed to provide a minimum of symbol changes

when equations are solved with a FORTRAN program.

2.3 COORDINATE SYSTEMS

Coordinate systems are so basic to the understanding of engineering

problems that their existence and properties are usually presumed to be

known to the reader. The next few pages attempt to document this "common"

knowledge. The nomenclature that is needed for subsequent discussion is

also defined. From the onset, a distinction is made between the coordinate

systems used in engineering analysis and those which have more application

to mathematical analysis. The understanding of three engineering and two

mathematical coordinate systems is essential.

2.3.1 Engineering Coordinates

An engineering coordinate system is specified by defining:

1. Unit vectors,

2. Coordinate names,

3. Stretching functions.

Unit vectors and coordinates are named with letters and a number; one num-

ber for each of the three directions. The three common coordinate systems

are:

2-4
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Cartesian, denoted by U, X as the unit vector and coordinate,
respectively;

Orthogonal curvilinear, denoted by V, Y,

General curvilinear, denoted by W, Z.

All of the coordinate systems used herein are taken to have the same

origin. A point in space is located by a position vector R. In a Cartesian

system,

R = U1 * X1 + U * X2 + U3 * X3 (2.1)

In any other type coordinate system, the definition of R becomes somewhat

abstract because the unit vectors vary between the origin and the point; there-

fore, basic definitions are established for an incremental departure from a

point, dR. To accomplish this definition, stretching functions which are the

relationships between increments of coordinates and distances tangent to the

coordinate directions must be introduced. If a coordinate is an angle, the

stretching function converts the increment of angle into an increment of length.

Now

dR = Ul*dXI+U2*dX2+U3*dX3

= V1 * (H)1/2*dY 1 +Y2* (H2)/2*dY2 +Y3* (H3) 1/2*dY3 (2.2)

= W1 * (Gll)l/ *dZl +W2* (G22)1/ *dZ2 +W3 * (G33)1/2*dZ3

for each of the coordinate systems, where the G's and the H's represent the

stretching functions. The reason for using the numbers in these terms is

explained subsequently. Note that stretching functions for the Cartesian

system are unity.

The values of the unknown stretching functions are determined by first

calculating (dR * dR) and then formally transforming from the Cartesian sys-

tem to the curvilinear system of interest.

2-5
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Recalling that the dot product of two vectors is the product of their

magnitudes times the cosine of the angle between them,

(dR * dR) = (dR)2

= (dX 1) 2 +(dX2)2 + (dX3)2

= H (dY 1 ) (dY2) +H2(d) 2 + H3 (dY3)2

= G11 (dZl) +cos(1 2)( )1/2 (022) (dZ +cos(l) (dZ2) +

cos(l, 3) (Gl)/2 (G33)1/2 (dZl)(dZ3) +

cos (2, 1) (G22) 1/2 (G 11)1 /2 (dZ 2) (dZ) + (G2Z)(dZ 2)2 +

cos(2, 3) (G22)1/2 (G33)1/2 (dZ2) (dZ3) +

cos(3, 1) (G33) 1 / (G1) / 2 (dZ3) (dZ1) +

cos(3, 2) (G33) 1 / 2 (G22) 1
/ 2 (dZ3) (dZZ) + (G33)(dZ3)2 (2.3)

where cos(i, j) means the cosine of the angle between Wi and Wj.

Suppose that the Cartesian coordinates are expressed in terms of new

coordinates by the equations:

X1 = X1 {Z1,Z2,Z3

X2 = XZ1Z1,Z2, Z3

X3 = X3 {Z1,Z2,Z31

(2.4)

where the braces denote that Xi is a function of Z1, Z2, Z3. The unit vectors

and stretching functions are not to be considered as independent variables.

The formal transformation of coordinates is

dXi = Mmi dZm (2.5)

2-6
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where

axi axi axi-
821 8Z2 az3

axi ax2 ax2 ax2
m azi az2 az(2.6)

8X3 8X3 8X3
azi aZ2 az3

and the summation is performed on the repeated symbol, m. (Note: neither

unit vectors nor stretching functions have yet been specified in our trans-

formation scheme. Note also, that the determinant of the matrix M is the

Jacobian of the transformation.)

Now the incremental distance can be determined by

(dR) 2 = (Mmi) (dZm) (Mni) (dZn) (2.7)

where the sums are on m, n, i over 1,2,3. It must be remembered that the

"Mmi" terms in Eqs. (2.5) and (2.7) are matrices, furthermore since the

dZ terms in Eq. (2.7) do not contain "i", the M's may be summed first. This

summation of M's is called the "metric," Gmn. It is a matrix; other proper-

ties of significance that it has are discussed later.

These operations are summarized in Fig. 1.

By comparing terms in the two length expressions Eqs. (2.3) and (2.7)

observe:

Gki = Gik = (Gii)
1
/2 (Gkk)

1
/ cos(i, k)

therefore the matrix Gmn is symmetric. The significance of these symmetry

properties is given in the comments section at the end of this section.

2-7
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To complete the transformation, unit vectors in the curvilinear co-

ordinate system must be determined. Eq. (2.2) may be written as

dR dZl + dZ + a dZ3 (2.11)azi d 2 aZ3

but

R = U1 X1 + U2 X2 + U3 X3 (2.12)

Therefore,

Wl(G11)/2 = aX1 U1 + X2 2 + X3 (2.13)azi azi IC)U Z I

W2 (G22)1/2 = U1 + 2 + U3 (2.14)Z zz 2 + Z2

W3 (G33)1/Z = ax 1 U1 + aXU + aX3 U3 (2.15)-z3 a2- U +Z3

The orthogonal curvilinear system is a special case of the general

curvilinear system which is developed in these pages. Its development would

show

Hi to equal Gii

and

Gij = 0 for i j.

Transformations could have been made directly between any two co-

ordinate systems, but it is convenient to consider the Cartesian system as

the reference. (Be cautioned that all literature in this field does not use

this reference.)

2.3.2 Mathematical Coordinates

There are several other coordinate systems which may be defined in

terms of the metric Gmn. In general they are non-orthogonal, so they are

named W , Z where additional letters are supplied to name each specific

coordinate system. These mathematical coordinate systems use only base

2-9
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vectors and coordinate increments; i.e., the stretching functions are not

defined explicitly but are part of the base vectors. Two additional systems

are used: those tangential to coordinate lines -denoted by N in the second

letter of their name and those normal to coordinate lines - denoted by ,/.

If base vectors are defined by

WNi = (Gii) 1/2 Wi (2.16)

they will be parallel to Wi (and also to the coordinate i) but'will not be of

unit magnitude. Coordinate lengths will be denoted by ZNi; hence, incre-

mental distances become

dR = WN1 dZN1 + WN2 dZN2 + WN3 dZN3 (2.17)

Notice that dZNi = dZi and that stretching functions are not used. The base

vector transformations to a Cartesian coordinate system are:

WNj = E aXUi sum i = 1, 2,3; to get j eqs. (2.18)

Hence the WN base vectors can be obtained

linear-differential-transformation by using

aXmNkm ZNk=
- ZNk 

8ax
8ZN1

Oax
8ZN2

ax1
\ZN3

from the U unit vectors by a

the matrix:

x2 aX3
aZN1 aZN1

aX2 aX3
aZN2 aZN2

aX2 8X3
aZN3 OZN3

Notice that WNi * WNj = Gij.

2-10
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Also

(dR) 2 = (MNmi dZNm) (MNni dZNn) sum m,n,i 1,2, 3

and

EMNini MNni = Gmn sum i = 1,2,3.

To further confound the reader, another set of base vectors which are

perpendicular to the coordinate surfaces, as opposed to being parallel to the

coordinate directions, is to be defined. Xi Cartesian coordinates and Yi

orthogonal coordinates are both parallel to the i coordinate direction and

perpendicular to the j and k coordinate surfaces. Only when non-orthogonal

coordinates are used is there a difference in these directions.

The new system is in terms of W/, ZO. The direction requirements

for this perpendicular coordinate system are:

WN1 · W0Z = 0

WN1 · W03 = 0

WNz .W~ZS3 = o (2.20)
WN2 · W03 = 0

WN3 · WoI = 0WN3.W91 = 0

WN3 * W02 = 0

Let

dR dZl+ * dZ,2 + dZd3 (2.21)
azol aZO2 aOzO3

and

dXi = a dZoj sum j = 1, 2, 3; to get i eqs. (2.22)

where

Xi = Xi {Z01, Z02, Z3, Z for i = 1, 2, 3

2-11
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Therefore a matrix like Eq. (2.6) and a metric like Eq. (2.8) can be constructed.

If base vectors W'i are defined by

E Uaxj uj Sum j = 1, 2, 3; to get i eqs. (2.23)

Now how are the functions chosen so that the W~i's will be normal to coordinate

surfaces?

In determining the WN, ZN coordinate system, it was sufficient to

evaluate the relative partial derivatives of the coordinate lines or the ele-

ments of the metric. Therefore, let us consider other properties of this

matrix. Other more direct methods could be attempted (see comment). The

inverse of G is: G 1 . G is given a tensor symbol; proof of tensor properties

is given in Ref. 2-1, p. 107. It is evaluated thusly.

1. Given

/G11 G12 G13\

= G21 G22 G23 (2.24)

G31 G32 G33/

2. The determinate of G is I[Gnrmll and it is Eq. (2.10).

2-12

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306102

3. The cofactors of G are (Ref. 2-1, p.49):

GCF11

GCF21

GCF31

GCF12

GCF22

GCF32

GCF 13

GCF23

GCF33

= (_1)2

= (- 1)3

= (-1)4

= (_1) 3

= (_1)4

= (_ 1)5

= (-1)4

= (_1) 5

= (1) 6

(G22

(G 12

(G12

(G21

(G11

(G11

(G21

(G l

(G11

G33

G33

G23

G33

G33

G23

G32

G32

G22

- G23

- G32

- G22

- G31

- G31

- G21

- G31

- G31

- G21

G32)

G13)

G13)

G23)

G13)

G13)

G22)

G12)

G12)

4. Define

GCF11

GCF = GCF21

GCF31

5. The transpose of

GCFl1

GCF = GCF12

GCF13

CGF12

GCF22

GCF32

GCF21

GCF22

GCF23

GCF13\

GCF23)

GCF33/

GCF31 \

GCF32 )

GCF33

(2.26)

(2.27)

6. Lastly,

GCF11
IlGnm II

=_ I GCF12
C = llGnm 

ii GnmDI

GCF21
II Gnml[

GCF22
II Gnmll
GCF23
I Gnmll

GCF31
IIGnm i

GCF32
II Gnmll

GCF33
i[Gnmll

LetG 1= GILet G = GI
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Now if GI is chosen as the metric, then the WQ5, Zh coordinate system will be

correctly aligned with the normals to the coordinate surfaces. This implies

that the U, X and WN, ZN coordinate systems must both be considered before

the W0, Z9 can be defined; i.e., elements of GI are calculated from these

other two systems. Hence;

axi aXi = GIjk (2.30)
-azj aZZk GI (Z

i

and

GIjk = Woj * Wok (2.31)

On occasion, mixtures of coordinate systems are used. For example,

a WN1, ZN1; WN2, ZNZ; W03, Z03 system could be used. These possibilities

are considered again on subsequent pages.

2.4 THE ORIGIN OF TENSORS

Discounting zero and first-order tensors which are completely described

by vector analysis, when do tensor quantities arise in engineering analysis?

Products of vectors without dot or cross simplifications and division by vectors

are not defined in vector analysis. These quantities arise in the physical

world and in the mathematical world. They are second (and higher) order

tensors.

The product of two vectors is a second order tensor called a dyadic.

Other quantities have also been given special names, but they are not reviewed

in this report.

Now vectors and tensors are defined; and, for consistency, scalars are

also named at this point.

2-14
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Zero-order tensor (scalar): A = A, i.e., one term. (2.32)

First-order tensor (vector): A =(AZ1)(W1)+(AZ2)(W2Z)+AZ3(W3) (2.33)

Notice there are three scalar coefficients, each of which is associated with

a coordinate direction. AZ1, AZ2, AZ3 may represent the velocity components,

for example.

Second-order tensor: A = (W1) (AZ 1) (W1)+ (W2) (AZ22) (W2)+ (W3) (AZ33) (W3)

+ (W 1) (AZ 12) ( (2)+ (W (WZ) (AZZ l) (Wl)
+ (W2) (AZ23) (W3)+ (W3) (AZ31) (W1)+ (W3) (AZ32) (W2)

(2.34)

Notice the one magnitude and two directions associated with each of the nine

elements of this quantity. This may represent the stress relationships (AZij)

between the force directions (the first Wi) and surface directions (the second

Wj). Also, note the natural use of indices shown by lower case letters (i, j,

k, etc.,) to represent general terms. The order of the terms in the triplet

of products has no special significance; however, it must be remembered

(or established by convention) which (Wi) is associated with force and which

with surface (or any other pair of related quantities). Therefore the second-

order tensor may be stated:

A = (AZij) (Wi) (Wj) for i, j = 1, 2, 3 (2.35)

Hence, an "N" - order tensor is:

A = .... (AZij.... m) (Wi) (Wj).... (Wm) for i, j,.... m 1, 2,3

(2.36)

There are N summations, N unit vectors, and N indices on Aij... m. Obviously,

for N> 3 some of the unit vectors must always appear more than one time; i.e.,

A1123 is a component for N =4.

2-15

LOCKHEED- HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306102

Tensors have now been defined. They have not been specifically de-

fined by transformation laws, as they often are. Such transformation laws

are discussed - in due time - and they do indeed hold true; but the definitions

as stated are those in which the application of mathematical modeling of a

physical situation is most obvious. The necessity of another defining mech-

anism is indicated if spaces rather than fields are of interest.

The literature on tensor calculus is not consistent in its use of terms.

Perhaps a mathematician would rather say that he has generalized certain

results. Nevertheless, both the A's and the AZij's are called tensors. A is

independent of the selection of coordinates; i.e., it is invariant with respect

to coordinates, whereas AZij's are not.

Returning to the definition of "N "
t h

order tensor, and indicating the

use of either Wi's or WNi's.

A (AZij... m) (Wi) (Wj).... (Wm)n)

=XZC '' (ANij... m) (WNi) (WNj).... (WNm) (2.37)

for i, j, . . . m = 1, 2, 3

Note the corresponding tensor components AZij... m and ANij. . m are not

equal, although either, with the appropriate unit or base vectors, will suffice

to define the invariant A. Unit vectors are also base vectors in orthogonal co-

ordinate systems.

The ANij.. m are called contravariant components of the tensor A.

If the We vector had been used,

A =Z.' .' (Aoij. . m) (Wti) (Woj).. (WOm) (2.38)

The A9ij.. m would be called the covariant components of the tensor A.
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Now to really complicate matters one might choose a mixture of base

vectors. For example, consider a second order tensor.

A =E (APij)(Pi)(Pj) for i, j = 1, 2, 3 (2.39)

where

Pi = WNi and Pj = W0j

Components in the WN coordinate system are named contravariant

components and in W~, they are called covariant. APij is said to be co-

variant wvith respect to W-j and contravariant with respect to WNi's. Often

they are distinguished by using subscripts and superscripts. Since these

components are related by the metric, Gmn, they can be interchanged at will.

The other major nomenclature system of interest is the indicial one.

The indicial system strives to preserve the same symbol for the invariant and

for its components; it distinguishes between the coordinate systems which can

be defined by the metric Gmn by the location of the indices. Since the indicial

system uses super- and subscripts for the distinctions between components,

performing transformations is often referred to as "raising and lowering the

indicies."

The tensor components which are used by the engineer are the AZij ones.

The units of these components are the same in all coordinate systems. The

other coordinate systems, hence the other components, do not have this prop-

erty. Historically, in attempting to discuss the components of tensors, with-

out first specifying the unit (or base) vectors which are being used, special

names have been given to these components. AZij's are called physical tensors

(Ref. 2-2, real tensors (Ref. 2-3) and true tensors (Ref. 2-4). In fact, Ref. 2-4

refers to other tensors as pseudo-tensors. Modern usage gives pseudo-tensors

a slightly different connotation (Ref. 2'5). The preferred terminology for our

purposes is to refer to A as a tensor and to the components as being physical,

covariant, contravariant or mixed. This is the system of Ref. 2-5.
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2.4.1 Scalar Components of Tensors

There are two ways that the scalar components of tensors can be used.

The first way is simply to recognize from the form of tensor involved how

many scalar components are necessary and when that number is specified,

stop. If a coordinate change is subsequently desirable, these scalar com-

ponents can be reevaluated in the new coordinate system. There should be

a red flag flying at this point for, if scalars are invariant, why do they have

different values in different coordinate systems? The reason is that they are

not proper scalar invariants but they are scalar components. This point is

now illustrated for first- and second-order tensors. This distinction between

scalar invariants and components can be made formally, and the resulting

scalar invariants can be used to define the tensor. Usually, this is more

trouble than it is worth because the scalar components are perfectly adequate

to model transport phenomena problems. However, the aforementioned il-

lustration is presented to clarify this point.

If, for example, the physical components of a vector (first-order tensor)

are known in a Cartesian and in a cylindrical coordinate system to be

A = (AX1) (U1) + (AX2)(UZ) + (AX3) (U3)

(2.40)

(AY1) (V1) + (AY2) (V2) + (AY3) (V3)

where for this illustration,

V1 is the radial direction

V2 is the angular direction and,

V3 is the axial direction.

Now AX1, AX2, AX3, AY1, AY2, AY3 are scalar components of the vector but

they certainly are functions of the coordinate systems used. What then are the

scalar invariant s?
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2.4.2 The Scalar Invariants of a First Order Tensor

In any coordinate system, the distance between the origin and any

point is called the position vector, R. If a vector A is defined at each point

in space, it is said to be a function of R.

X = A{R (2.41)

Since A and Rare vectors, they are invariant with respect to coordinate sys-

tems.

Note that A and R lie in a plane, the direction of which is defined by

the cross product of A and R. The angle between A and R lies in this plane.

To simplify these relationships, consider a "natural coordinate system" con-

sisting of a cylindrical coordinate system where the position vector (also

called the radius vector) is taken as the radial coordinate and also the angular

coordinate origin line. The axial coordinate is taken to be parallel to the nor-

mal to the plane containing A and R.

Two scalar invariants are immediately obvious: (1) the magnitude of

A, IAI, and (2) the angle between A and R, H.

8 = Cos- 1[A · /IAIIRI] (2.42)

The third scalar invariant must be a number which fixes the direction

of the plane containing A and R. There is no obvious choice for such a scalar

invariant. It is tempting to use the magnitude of the cross product of A and

R as the third invariant, but it can be calculated from the other two; therefore,

it does not supply an independent relationship.

Inability to calculate the third invariant means that the axial direction

of the "natural coordinate system" cannot be determined from A and R alone.

Perhaps the direction of the cross product of A and R may be thought of as

the third invariant, but this still does not yield the necessary third equation,

unless this direction is assigned an arbitrary value - like zero. Therefore

2-19

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306102

three scalar invariants are not available for a simple algebraic transforma-

tion of the components A from one coordinate system to another. The formal

linear transformation for components of A can be accomplished, but there is

a more simple way.

If components of A and R are known in one coordinate system (say the

U, X system) and one wishes to determine the components of A in, for example,

the W, Z system, the following relationships can be used.

(A * WI) = AZ1

(A - W2) = AZ2 (2.43)

(A * W3) = AZ3

Of course one must be able to determine W, Z from U, X, but transformation

laws have already been presented for this determination.

2.4.3 The Scalar Invariants of a Second-Order Tensor

Since the components of a tensor can be defined only after the unit or

base vectors of a coordinate system have been chosen, a coordinate system

with three unit vectors: WI, W2, W3, is chosen here.

Let B represent the second order tensor, that is being discussed. It is

defined in the W coordinate system by its "ij" components.

Bl B12 B13

B = B21 B22 B23 (2.44)

B31 B32 B33

The easiest way to represent the scalar invariants of this tensor is to

write it as three vectors and then use the vector invariants. To do this, assume
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that the dot product of B and an arbitrary unit vector H forms a vector which

equals a scalar, E, times H.

B H =E H (2.45)

Let I be the unit tensor:

1 0 0

I= 0 1 0 (2.46)

0 0 1

in the W coordinate system.

Therefore,

(B - E I) H = 0 (2.47)

This is a classic eigenvalue problem. The solution of this problem would

give three eigenvalues: El, E2, E3 and three eigenvectors:

H1 = (Cll)(W1) + (C12)(WZ) + (C13)(W3)

H2 = (C21)(W1) + (C22)(WZ) + (C23)(W3) (2.48)

H3 = (C31)(Wl) + (C32)(W2) + (C33)(W3)

where Cli, C2Zi, C3i are the direction cosines of H with respect to W.

Thus

E1l = El HI

E2 = EZ HZ (2.49)

E3 = E3 H3
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are the three vector components of B; however, two of the eigenvalues may

be complex, making two of the eigenvectors also complex. To avoid this

problem the use of symmetric and antisymmetric tensors is introduced. Note

that nine and only nine scalar invariants of B can be calculated - be they real

or complex. Many other scalar quantities can be calculated from these nine

scalar invariants; in fact any of these sets of quantities can be designated the

scalar invariants of the tensor B.

Any second-order tensor can be represented as the sum of a symmetric

tensor (BS) and an antisymmetric tensor (BA).

B = BS + BA (2.50)

where the components of BS and BA in a W coordinate system are

BSij = (1/2)(Bij + Bji)

BAij = (1/2)(Bij - Bji) (2.51)

Repeating the contraction scheme used on the general tensor B to re-

duce it to vector components, let

BS * HS = ES HS

or

(BS - ES I). HS = 0 (2.52)

The solution of this equation yeilds three eigenvalues (ESl, ES2, ES3) and

three eigenvectors

HS1 = (CS11)(W1) + (CS12)(W2) + (CS13)(W3)

HS2 = (CS21) (W1) + (CS22) (W2) + (CS23) (W3) (2.53)

HS3 = (CS31) (WI) + (CS32) (W2) + (CS33) (W3)
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Hence

ESI = ES1 HS1

ES2 = ES2 HSZ (2.54)

ES3 = ES3 HS3

(Note: If a vector contains a number in its name, there must be a defined

unit vector which corresponds to the vector; i.e., the index on ESi corres-

ponds to the ith unit vector (HSi) not to the ith component of the coordinate

vector, W.) Since the tensor BS is symmetric all of the eigenvalues ESi's

and eigenvectors HSi's will be real (Ref. 2.3, p. 61). There are three scalar

invariants for each of the ESi vectors.

Consider now the antisymmetric tensor.

BA = BAll W1WI + BA12 W1W2 + BA13 W1W3 +

BA21 W2W1 + BA22 WZWZ + BA23 W2W3 + (2.55)

BA31 W3W1 + BA32 W3W2 + BA33 W3W3

in general, but BA is antisymmetric.

Therefore, by definition

BA11 = BA22 = BA33 = 0

BA12 = -BA21

BA13 = -BA31

BA23 = -BA32 (2.56)
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Since BA has only three components, it may be interpreted as a vector

(Ref. 2-6, p. 2 4 ).

Let

BA12 = F3

BA23 = Fl

BA31 = F2

3
Fk =

i, j= 1

eijk BAij

fijk E +1, if i,j,k =

-1, if i,j,:k =

a 0, if any i, j,

I
(2.57)

1, 2, 3

2, 3, 1

3, 1, 2

3, 2, 1

2, 1,3

1, 3, 2

k are equal

F = Fl W1 + F2 W2 + F3 W3 (2.58)

is called the vector of the antisymmetric tensor. Again F has three scalar

invariants which were previously discussed.

Two important operations result:

BA A = A x F and A BA = F x A (2.59)

where A is an arbitrary vector.
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Therefore, the eigenvalue problem for the antisymmetric tensor becomes:

BA. A = EH =A x F (2.60)

Therefore

E = 0, i IF!, -i IF, where

i is the 11, Ref. (2.3), p. 60.

The most common usage of the split on B is when the derivative of the

velocity with respect to the position vector is divided into the symmetric

rate-of-strain tensor and the antisymmetric rotation tensor.

2.4.4 Transformation of Tensor Components

If the components of a tensor are known in one coordinate system, they

can be transformed into components in a second coordinate system by the follow-

ing relationships.

Let one general physical curvilinear coordinate system be designated

by WA, ZA, and GA and a second by WB, ZB, and GB. Then for a first-order

tensor:

FF = FA1 * WAi + FAZ * WA2 + FA3 * WA3
or

F F = FB1 * WB1 + FB2 * WB2 + FB3 * WB3 (2.61)

Where

GBFIiI__1/2 8ZB1 GAZ2 6ZBl~FB1~ ~F = GB/+ ll'\ aZAZB1 FAZ
GAll aZAl GA22} aZA2

+/2 GaZBI) FA3 (2.62)
A33 -25aZA
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and FB2, FB3 are given by like relationships, or in general (Ref. 2.2):

1

FBi = (G ii aZi\ FAj (2.63)

where the summation is on j and an equation is obtained for each i.

Second-order tensor:

EE = EAmn * WAm * WAn (2.64)

where the first sum is on m and the second is on n over the range 1, 2, 3.

,O [Gmm ___~ 1/2
EBij [GBmm GBnn ( Aim aZBn EAmn (2.65)

GAii GAjj aZAi azAj

where the first sum is on m and the second is on n over the range 1, 2, 3.

Nth-order tensor:

D = ... DAmn... s *WAm *

WAn,* . . * WAs (2.66)

DBi Qj..= .- A I[GBmm GBnn ... GBssl 1/
DBij. =... I ' GAii GAjj GAff

ZBm aZBn ... aZBs DAmn.. s (2.67)
aZAi aZAj ZA s (2.67)

If only WN, ZN or only W', Z,& coordinates are used, the ratios of G's

do not appear in these transformation equations because they have been ab-

sorbed in the definitions of the base vectors. If Cartesian coordinates are

used, the G's do not appear because they are unity.
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These transformation laws can also be used to go to or from WN,

ZN -~ W0, Z~. The G's will appear in that case.

The operator, V

v= a( )/aR.

Before the vector and tensor quantities that have just been defined can

be used effectively, their derivatives must also be evaluated.

This may be done thusly:

aAj = [Bij + aA Wi sum on i, giving j equations. (2.68)

The significance of this equation is that the scalar coefficients of the vector

represented by the differentiation are defined. Bij is a matrix which is a

function of G.

In a similar manner

aT W i
aZn' = aZn Wi Wj + Tij [azW (2.69)

sum on i and j, giving N equations.

a[wi Wj]/a Zn is a function of G.

2.5 CLOSURE

With the terms defined in these pages, two conclusions are possible.

1. If the conservation laws can be written in one coordinate
'system - even the Cartesian system - they can be written
in any other system. All of the unit (or base) vectors can
be removed from the equations by writing them as a set
of partial differential equations.
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2. Before Item 1 can be realized, the proper tensor form of
every variable of interest must be known. This is a dif-
ficult requirement if empirical data are used, especially
for the second order tensors which represent shear-stress
and Reynolds stress. The Reynolds stress term will be
considered in detail - and the turbulent kinetic energy
models will result.

2.6 COMMENTS

(This material is not necessary for continuity of this chapter, but is

necessary for completeness.)

A. Implications of G being symmetric

G12 = G21, G13 = G31, G23 = G32

(1) IIGnml = G11 G22 G33 + G12 G23 G31 +

G31 G12 G23 - G31 GZ2 G31 -

-Gll G23 G23 - G12 G12 G33

=Gll G22 G33 + 2 G12 G23 G31

-(G31) 2 G22 - Gll (G23) 2 -G33(G12) 2

= (G22 G33 - [G233 2 )

GCF21 = -(G12 G33

GCF31 = (G12 G23

GFC12 = -(G12Z

GCF22 = (G11

G33

G33

GCF32 = -(Gll G23

- G23 G31)

- G22 G31)

- G31 G23) = GCF21

- [G31] 2 )

- GlZ G31)
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GCF13 = (G12 G23 - G31 G22) = GCF31

GCFZ3 = -(Gll G23 - G31 GlZ) = GCF32

GCF33 =(Gll GZZ - [G1]2)

(3) Aside-determine what GI elements are -

GCF11_ G22 G33 -[G23] 1

1iGml1 -I(Gl (G22 G33 -[G3] 2 ) + 2 G12 G23 G31- Gll

-[(G31)2 G22 + (G33)(G12)] )
This inequality would become an equality for orthogonal coordinates.

B. The linear differential transformations were used to relate two different

coordinate systems in the previous discussion. But could different trans-

formations be used for the Wd, ZO system?

For example, usually

Zi = Zi IXl, X2, X31

Z2 = Z2 iXl, X2, X3)

Z3 = Z3 IXI, X2, X3) are known,

Then

dZi = L axj dXj sum on j, giving i equations.

Now if this procedure were applied to the calculation of explicit values of the

U's, terms involving aR would have to be evaluated; two problems arise.
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(1) An integral expression for R in terms of W, Z would have to be determined;

for example, in cylindrical coordinates, R =VR * YR+ VZ * YZ. The lack of an

integral expression for R in terms of stretching functions and W's and Z's is a

discouraging fact. (2) Simple expressions like

Ui =C Eiazj Wj sum on j, giving i equationsDi = E 8aXi

would not result, because the Wj's are functions of Xj's; they are not constants.

C. Evaluation of a( )/aRfor vectors and second-order tensors.

(1) Definitions and nomenclature from Ref. (2-1).

ae .

ax~ij em

m 3 mk

1I
3 + -k +g gkg

i , ax- axi ax k

* .+ -. xI _ 
Lax= axi ax] / 

a9gi3 o':j3 _

ax) ax, a x

. 3

ax~m=lm
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L agxj

agi2

axJ

ragi3

ax j

f (i, )

agjl
+

axi

+

+

agj2
ax x

agi]+

ax J1 +
3X 

12
g

13

ag3 _ ag ¥1 +

xi 3 ax axj

+2 £ ( ) e3

i, j = 1, 2; 2, 3; 3, 1;

1, 3; 2, 1; 3, 2;

1, 1; 2, 2; 3, 3;

(2) Introduction of general unit vectors

ai 1/2 (gijm) m 

axj

1/2
Wi agii

ax j
+ gii

awi _- aAn(gii)l/2

ax j ax3

awi

axj

Wi + f(g)

= f(g) t(Wm gmm l
/Z )

1/g -
= f(g) gmm Wm

1/2
grmm Wm

where f(g) represents a function of g or gij.
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Ai awi + Wi
axJ

aAi

axi

aWi
= A1x J

+W1 MI +
ax3

axJ

aW2
+ A2 aX

jaxJ

W2 a A2
ax 3

= (Blj)W1 + (BZj)

+ A3 a3 +
axJ

ax3+ W3 ) W3

Wz +
(B3j) W3

(see Item (3)). B is a matrix function of gij.

aA

axj
(Bij + aA1

ax

B3j +

+ (B2j +A2 _+ aA ~ W2 +
axJI

aA3 W3

axJ

(3) Derivatives of unit vectors

Wi +1 2 gll I (g 1 )1/2 (ai +Wi+ T 1 g +

\axJ
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agi +
ax'/

g13 (gl 1) 1/2

i 2 a 3gil +
axj

ag 2

axi

3 gi3
aXJ

agj 
Dx i

g23 gi3
+

1/2

3 2i | W2 + g33

ag.j 1+ g3 2 gi2 +
ax 1 axJ

g3 gi3 3 gj 3

g ax ax'

g31 a gil1
g axi

agxjaxi

a gij
8x 3
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+
ag..

+ Ji

ax'

agii\
axz/+

1/2
g2 2

2

ag.

axi

ag I

ax /)
+ 3 j3

axi

[a gi2
axJ

+

22
g

agj3

axi

+ 8ga
ax1

+

W3

a gi

3X2 ]

g1 (gl i/2 gi2

- agiL ]+
ax1

- gi ]+aX2
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aw
axj

l_

OWl

ax'

aWz
ax'

aW3

ax

OW I

ax2

awz
ax2

aW3
ax z

(4) Extension to second-order tensors.

a(T) _ a(Tij Wi Wj) _

axn ax n

aTij i
axn

W) +

aT ij i w j

Tij awi wj
ax n

[Tij [i ax'j83Xn

where n is a particular coordinate and i, j are both summed.
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Section 3

TURBULENT MIXING VIA TURBULENT KINETIC ENERGY

If the conservation laws for laminar flows are assumed to be true at

each instant in a turbulent flow, formal averaging of these equations can be

performed. These operations produce the Reynolds stress-tensor. This

section attempts to represent the best possible analysis of these averaged

equations before resorting to empirical data fits. Such efforts make exten-

sive use of the turbulent kinetic energy, and have come to be called turbulent

kinetic energy models to distinguish them from eddy viscosity models. These

methods are still being researched; hence, a definitive technology does not

yet exist. Simple cases will be developed and general cases outlined.

The starting place for analysis is the conservation laws. Immediately

a nomenclature problem arises. No universally accepted system exists.

Facility to read indicial systems must be established. Therefore a system

which is flexible enough to serve as a standard and which preserves the sum-

mation feature of the indicial system will be established and used throughout.

An extensive listing of symbols is given in the Nomenclature, page iv, to

facilitate comparisons to standard references.

3.1 THE CONSERVATION LAWS

Consider the following statement of the continuity and momentum equa-

tions for a single component fluid with no body forces acting on it. A Cartesian

coordinate system U, X will be used; these coordinates are not moving, i.e.,

they are inertially fixed.

Continuity equation:
3

ap + ap.Vi =0 (3.1)

3 -i=l 

3-1
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p is density, 8 is time, and V is velocity. Notice, our system of using cap-

ital letters has been compromised, because Greek letters have also been

used to name variables. This was done to conserve space in writing the

equation. FORTRAN names (RHO, THET) could have been used and must be

in programming, but they are read with the same name.

Momentum equation:

f/ 3

P aei. +a Vj i
J-

(3.2)= L 2Tjix axPj =1xj - ax
j=l

Tji are the components of the shear stress tensor, T. One would like to ex-

press T as a function of the velocity field. This functionality is denoted by:

(3.3)7 = jfV( = IV

Since T is a second order tensor and V is a vector; this functionality is not

straightforward. Consider

av = a second-order tensor
aR

(3.4)

This tensor may be written in terms of a symmetric and an antisymmetric

part. Components of these tensors are:

11 aVi 
= axj + avj) +axi! 

1 (avi avj
2 \axj axi

It has been previously established that an antisymmetric tensor component

is related to a vector such that:

3
Wk = 

1i, j.=l
ijk ( axi - vj)xj a-RT

3-2
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W represents the rotation of a rigid element of fluid; there is no shear asso-

ciated with such a rotation.

Let

Di =Dij = ~--f (3.7)
'ax

This deformation or rate-of-strain tensor is related to shear stress,

by

T = T DJ (3.8)

Let

T = A I + B D + C DD

for a Newtonian fluid where

3 V * V, B =+ 1, C = 0

(3.9)

(3.10)

and

T [- ( - B) V. V]

Assuming t = 0,

I + (3.11)

T = [- V . V]

a Vk
8Xk

I + ,UD or

6ij] + /1 Dij

3-3
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where 6ij is the Kronecker delta and its properties are:

6ij = 1 if i =j
(3.13)

= 0 if i/j

Notice Tij = Tji; i.e., T is summetric. Pressure may be considered an

additional stressing force and a pressure tensor is defined as

oij = Tij - P bij = -P 6ij + /u (Dij

3

2k
k=l

aVk 6i
aXk (3.14)

Finally, after noting that i and j may be interchanged

a =ji a 2
axm- (/ x Dji) 3

aVk
aVk 6j.7aXk a1

The momentum equation becomes,

a ( I
axj

3

k=l

aVk 6ji)
aXk fJJ

aP
xi

This is the Navier-Stokes equation (without body forces) as given in Hinze

(Ref. 3-1, p. 16) and Schlichting (Ref. 3-2, p. 61).

Consider the case of constant viscosity.

( ae'j avi j=+j =1I
vj

3

j =1
a2 Vi

axj axj

(Details Hinze (Ref. 3-1, p. 17).

3 ax. 3
k=l

aVk
aXk

(3.17)
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k=l
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To average Eqs. (3.1) and (3.17), define mean and fluctuating components

V= VM + VF, P = PM+ PF, p =pM+ pF. (3.18)

Average and combine said equations.

a2vMi
·+J1\ aXjaXj

j=l
PM VMi + VMj aVM PM

ae aX = Xi
j=l 

3

+ 3 aXi
k=l

aVMk
aXk 

3

j axj
j=l

+

pM<VFi VFj>+ a <pFVFi>

VFi) VMj) + pF VFi VFj))axj~ v j> 

(3.19)

where < > denotes the time-average of the included products. Note, values

for < VFi VFj), <pF VFi>,<pF VFi VFj > must be obtained to solve the momen-

tum equations. Considering the incompressible continuity equation

3 
av I % VMj +
axj axj

(3.20)a VFj = 0
axj

Therefore

3

j =1
aVFj =0 =axj

3

j=I

a VMj
axj

3-5
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The incompressible momentum equation is:

avMi + ) 3VMi - + aXj3XJ

p axj = axi E aja
j=l j=1

E L aj p < VFi VFj (3.22)

j=l

A mean body force, FMi, may be added to either Eq. (3.16) or Eq.

(3.22) if it is needed. Equation (3.22) with the body force is attributed to

Reynolds and the term < VFi VFj > is called the Reynolds stress.

Reynolds stress is a second-order tensor, with three of its terms

appearing in each momentum equation. The next step in the analysis of

turbulent flows is to represent this tensor in a tractable form.

3.2 THE REYNOLDS STRESS TENSOR

Before more generality is introduced, the analysis of incompressible,

constant viscosity flows will be extended. One would wish to express <VFi

VFj > as f{VM t . Let us denote what the requirements for such a representa-

tion would mean. Realize that <VFi VFj> may be considered components

of a second-order, symmetric tensor.

1. The Reynolds stress tensor cannot be proportional simply to
the velocity of the fluid, because the equations of motion must
be invariant under a Galilean transformation. The same tur-
bulent shear stress must result with a fixed body and moving
fluid, or vice versa. Hence, <VFi VFj > may be proportional to

a vM a vM* or aX X(3.23)
axi axi axj

See Monin and Yaglom (Ref. 3-3, p 371).

3-6
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2. For isotropic turbulent flows, the extra stress term
must behave as an additional pressure term only.
(See Ref. 3-3, p 388).

3. < VFi VFj> is a symmetric second-order tensor;
hence whatever model is chosen to represent it
must have the same properties as such a tensor.

4. The additional terms which appear in the time-averaged
continuity and momentum equations are single-point cor-
relation functions, and as such must obey certain sta-
tistical requirements.

These properties are satisfied by the following mathematical models

(Ref. 3-3, p 388).

If the fluid is moving as turbulent slug flow; i. e., there are no veloc-

ity gradients, the turbulence will be isotropic and should behave as an addi-

tion to the thermodynamic pressure. For the Reynolds stress tensor to be

isotropic, its diagonal elements must be constants and its off-diagonal

elements zero. To represent this behavior:

3
p (VFi VFj> = <VFkVFk> 6 = 2= p K 6ij (3.24)

k=l

where K is the turbulent kinetic energy per unit mass (abbreviated TKE). If

the flow has velocity gradients, <VFi VFj> cannot be simply set equal to a

constant times the velocity because each term in an equation must have the

same tensor character. But

(avMi aVMj
aXj + aXi/

which equals Dij, is a suitable second-order tensor; therefore, let

<VFi VFj> T F VM I avMi + aVMI )(3.25)
axj aXi /

3-7
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where F tVM
i

is a function of the vector VM. Since the isotropic limit pre-

viously given can be added to Eq. (3.24) without destroying the functional

character of the equation

<VFi VFj> = 2 K 6ij + F a VM + a (3.26)K axj axi

Fl VM
I

may be a scalar, a second-order tensor, or a fourth-order tensor.

It cannot be an odd-order tensor because proper contractions cannot be made

to maintain the tensor nature of the equations. Even-order tensors of order

higher than four when contracted would become identical with second- and

fourth-order terms.

What has been discussed are possible values of <VFi VFj>. Presently

an analytical method for obtaining these values will be discussed. Empirical

determinations of turbulent mixing have been made which fit some of these

functional forms. These may be stated as follows.

F is a scalar.

<VFi VFj> = K 6ij - L K
1
/
2

Dij (3.27)

where L is the mixing length. Usually the first term on the RHS may be as-

sumed negligible (Ref. 3-4, p. 33), then the expression becomes of the form

of that suggested by Boussinesq.

F is a second-order tensor.

p <VFi VFj>= 3 Kp 6ij - (p K)1/2 (Lik Dkj + Ljk Dki) (3.28)

k=l

This form was suggested by Monin. Lij are components of a symmetric

second-order tensor; hence, they represent six length "scales," since their

3-8
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dimensions are in length. The introduction of Lij is useful to interpret the

physical phenomena of mixing, but it does not simplify the problem of deter-

mining the Reynolds stress tensor, either the six components of L or <VF

VF> must be known.

F is a fourth-order tensor.

3

p <VFi VFj> = K p 6ij - p E KKijkm Dkm (3.29)

k, m=l

where KK must be of the form:

KKijkm - 2 (Kik 6jm + Kjk 6im) (3.30)

No one appears to have used this as an empirical form of eddy transport.

In all of these forms, the approximation of neglecting the first term

on RHS of the Reynolds stress tensor is frequently encountered.

Now we shall return to the problem of obtaining the Reynolds stress

tensor by analysis.

3.3 TURBULENT KINETIC ENERGY

To obtain expressions for <VFi VFj>, the conservation laws already

described may be manipulated until partial differential equations for the com-

ponents of interest are obtained; these are called dynamic equations. A more

satisfying development which results in the same equations may be made by

using the statistical properties of the variables of interest; specifically, equa-

tions for the moments are determined. Both of these developments will be

reviewed.

3-9
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3.3.1 The Dynamic Equations (Hinze, Ref. 3-1, p 250)

The incompressible momentum equation written in terms of the mean

and fluctuating terms is:

a VMi VFi + (VMk+ VFk) a (VMi + VFi) 1 3PM
3e + aae aXk p DXi

k=l

3 2
1 aPF + aVMi + VFi (3.31)
p axi L XkaXk

k=l

3 VMiAssume steady mean motion, a = , and add the fluctuating part of the

continuity equation, Eq. (3.21), to the momentum equation.

a VFi Mk a i + VFk aVMi + VMk VFi + VFk avFi +
a 6e a3Xk 8Xk 8Xk aXk

k=l

+ VFi 3aVFk) = RHS of Eq. (3.22) (3.32)
aXk

Combine the last two terms on the LHS and substract the time-average of

this equation, Eq. (3.32), to obtain:

a VFi 1 a VMi a VFi 
a + (VFk aX + VMk aVFi + ax VFi VFk -
8] kXk 8Xk + 3Xk

1 1 aPF + 2 VFi
-<VFi VFk> 2 =-- (3.33)=Pp axi + 'VXk -Xk

There are three equations corresponding to the three momentum equations.

Denote another one by j and write it out.

VFj + ~(VFk a VM + VMk VVFj-ae aXk + Xk + Xk
k=l

I aPF+ a 2VFk (3.34)-\VFj VJk a/ P xi + PL... aXk 3Xk
k=l

3-10
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Multiply Eq. (3.33) by VFj and Eq. (3.34) by VFi, then add, and average.

place the naturally occurring average terms on the RHS of the resulting

equation with their equivalents as listed in Hinze, (Ref. 3-1, p Z51) to get:

Re-

3
a _ avMi a VMj
-8 <VFi VFj>+ + [< VFj VFk> aXVMk + <VFi VFk> XaXk + < V F i VFk> 8Vij

k=l

3
+ VMk Xk < V F i VFj > =- Xk <VFi VFj VFk >

k=l

- axi< PF VFj> + a-j < PF VFi> +
P axi ~~axj

1 IPF (SVFj
+ p axi

a 2 < VFi VFj >
aXk aXk

+ 2VFi +

-/a VFiaXk

<VFi VFj > represents the mean value of two velocity components or the ele-

ments of the symmetric Reynolds stress tensor. There are six possible

unique combinations of i, j; namely, 1, 1; 2, 2; 3, 3; 1, 2; 2, 3; 3, 1. This

means that Eq. (3.35) represents six equations.

A contraction (in the terminology of Cartesian tensor analysis) of

these six equations is represented by

3

ae < VFi
i=l

VFi> + 
i, k=l

[2
VFi VFk a VMi

aXk

VMk k < VFi

3

i, kl
i, k=l

VFi > ]

VFi VFi VF +
2

3-11
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+ y (3 Vi a2- J< VFi VFi > _ (3.36)
3Xk vaXk aXk

i,k=l \

This equation is obtained by adding the three Eqs. (3.35) for which i, j = 1, 1; 2,

2; 3, 3. (Note that <VFi VFi> is K, which is two times the turbulent

i=l
kinetic energy. )

To use either the six Eqs. (3.35) or Eq. (3.36), now that they have

been derived and all of the terms have been identified, the averaged quanti-

ties; i.e., those in broken brackets, ( >, may be named as new dependent

variables. This means that the number of dependent variables may be made

somewhat less than the number of previously named variables. For example,

p <VFi VFj > may be called pK, two variables, and that p, VFi and VFj (three

variables) are not necessary. K is the turbulent kinetic energy.

Attempts to solve for all of the dependent variables at this point, by

making empirical correlations when necessary, is called "using a turbulent

kinetic energy approach" to represent turbulence. Various attempts to accom-

plish this task will be reviewed, but first an alternate derivation of Eqs. (3.35)

will be outlined.

3.3.2 The Moment Equations (Monin and Yaglom, (Ref. 3-3, p 374)

At best the operations involved in obtaining Eqs. (3.35) are cumbersome,

they certainly are not obvious. A more direct approach is to calculate the

mean value of an VFi VFj term directly. This can be done by formulating the

equations for moments.

Consider n different fluid dynamic variables (dependent variables).

Generally, these may be functions of position and time. Denote these variables

by the symbol Ci. In general, different Ci's may be functions of different points

in space and time. The i"n " ith moment of these variables is defined by

3-12
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B =CI R1, 8 * C2 R2, 9 * C3 'R3, ) .. *Cn n, (3.37)
<C I I 11 R3,81... IIn, v

the Rj points may be coincident or different.

Reversing the order of averaging and differentiation of Eq. (3.37) with

respect to time.

aB <C1 *a C2 *... Cn> + C1 ---- *. Cn> +
a- a0 a"

... + <c . an> (3.38)

B has been written as a scaler; it may be an I"n"th order tensor, if the Ci

variables are vectors. However, the defining conservation equations are

already written as partial differential equations, which means that one may

simply consider the vector components as scalers (if no coordinate change is

used; i.e., if no vector or tensor component has to be calculated in another

coordinate system).

To proceed, one uses Eq. (3.38) to define a "B," the partials with re-

spect to time that appear on the RHS are obtained directly from conserva-

tion laws. This is the logic for why the operations in the previous section

are reasonable.

The previous section may be summarized by saying that the time-

averaged values of the single-point correlation functions, < VFi VFj \, were

formulated as a set of partial differential equations. The correlations were

single-point because all of the position vectors in Eq. (3.37) when applied to

this problem were identical. The determination of an average value may be

described as determining the correlation of the variables involved. More

formal definitions of this term can be made (Ref. 3-3, p 228), but these do

not contribute to our further understanding of turbulent mixing.
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3.3.3 Closure

Returning to the problem of obtaining a solution to either Eqs. (3.35)

or (3.36), one sees that an attempt to calculate directly a correlation function

leads to difficulties because more correlations are introduced into the equa-

tions. Thus more variables than equations result - this causes what is termed

the closure problem. Namely, new equations for the unwanted correlation

functions must be specified before a solution can be obtained. Reference 3-3,

p 377 summarizes the history of recognizing such difficulties.

The next section reviews the better attempts to supply such new equa-

tions.

3.4 SOLUTIONS TO THE TKE EQUATIONS

The dynamic equations Eqs. (3.35)whichrepresent the velocity correla-

tions, < VFi VFj >, are one starting place for using empirical turbulence data,

but it is not an obvious starting point. However, Prandtl reportedly suggested

an equation for turbulent kinetic energy which was "derived by logical reason-

ing and dimensional analysis," Eckert and Drake (Ref. 3-5, p 369). This equa-

tion is similar to the contracted form of the general kinetic energy equation,

Eq. (3.36). In any event, nothing more can be accomplished until some empir-

ical information is introduced. There are four ways that this can be accom-

plished: (1) postulate enough information to solve Eqs. (3.35); (2) solve Eq. (3.36)

or one similar to it for K, using empirical data as necessary; (3) repeat method

(2) except solve for both K and an additional length scale, L, from equations

like Eq.(3.36); (4) solve Eqs. (3.35) for the components of the Reynolds stress

tensor and one equation like Eq. (3.36) for a length scale. Without posing the

question why, let us examine what these four methods would entail.

3-14
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3.4.1 Solutions for all Correlations

In order to understand turbulent kinetic energy methods, consider the

work reported in Ref. 3-6, which is a somewhat more general account of that

reported in Refs. 3-7 and 3-8.

Rearranging Eqs. (3.35) and using Eq. (3.21)

a
e <(VFi VFj) + aXk [(VMk< VFi VFj + <VFi VFj VFk, =3

k=l

(3.39)
k~3 1 . . ~

_ ~ [<VFj VFk~ a VM <Vi Vk1i_~ - 8X-----~ + (gFi VFkX/ aXk
k=l

+ [The last six terms on the RHS of Eqs. (3.35)]

The first pair of these last six terms can be moved to the LHS of our

new equation. The second pair are to be left on the RHS. The last pair con-

tain a term that with the definitions on p 251 of Ref. 3-1 can be written:

3
i L< VFj

k=l

a2VFi \
aXk aXk 

3k=l

which is

VFj 8 Xk

+ a (VFj Tki) = VFj aT 7k+ Tkia VFj
aXk aXk aXk
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Therefore all of these operations can be combined to give:

a<VFi VFj+ aXk [VMk<VFi VFj>+ <VFi VFj VFk>+

k=l

+ VFi (6kj PF - rkj) + VFj (6ki PF - -7ki)] =

< VFj VFk> V + < VFi VFk > a VMj ]aXk 3Xk

+ p<PF aVFi lp<F aVFi>p aXi. p\ aXj

(<r"~~ki avFi\ + kj VFi (3.40)
3( , a v ' 8Xk/

Since Eqs. (3.40) have introduced new correlation terms, models must be used

to relate all of the terms on the RHS to <VFi VFj > and to mean flow properties.

Mellor and Herring (Ref. 3-6) assumed, on the basis of physical arguments, that:

<VFi kj>+ <VF ki> (a<VFj VFk>+ a<VFk VFi)+ a <VFi VFj>)

(3.41)

aVFi\, a'i VFj 2 K3/2
kj a /+ ki / 3 L4 (34Z)

Where L4 is a function of v only near a wall.

1 PF avFiX> 1 K1 /2 (VFi VFj> - 6ij K) (3.43)

-P F a - - 3 / 6 L16
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(< PF VFi> =
K 1 / 2 L2

2
aK
axi

<VFi VFj VFk> = K 1 / 2 L3
( {< VFj VFk>

axi

+ a VFi VFk)
axi

f+ a<VFi VFj )
~+ Xk

With these five assumed functions (Eqs. (3.41) through (3.45)), Eq. (3.40)becomes:

D<VFi VFj >
D8

+ K 1 / 2

a< VFk VFi) a (,VFi VFj
+ axj + aXk

L 3 a(<VFj VFk>axi

+ K / 2 LZ
2 (

6ki aKj - <VFk VFi>

3 VMi.\- < VFk VFj> aXk )

3 3

a VMj
aXk

1 K/ (/vFi VFj>-

K 3 /2
_L4 6ijL4

The L1, L2, L3, L4 are empirical functions which must be specified.

Notice that Eqs. (3.46) can be contracted; i.e., the three equations for

i, j = 1, 1; 2, 2; 3, 3 are added, and divided by two to give:

D(K/Z) 3

k=l
(aXk (v+jak +
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3a<VFi VFk> K1/2 a(K/2)
+ axi + K L2 aXk

j=l

i_3 _ VMi _K3/2

VFk VFi> aXk - L447)
i=1

There is not an immediate application for this equation, since it represents

less information than Eqs. (3.46). Equation (3.47) is known as the turbulent

kinetic energy equation.

The six equations represented by Eqs. (3.46) together with the mean

continuity equation, Eq. (3.21), and the three mean momentum equations, Eqs.

(3.22), can be solved for the ten unknowns: VM1, VM2, VM3, PM,< VF1 VF1>,

<VF2 VF2>, <VF3 VF3>, <VF1 VF2>, <VF2 VF3>, <VF3 VF1>. if the neces-

sary boundary conditions are specified. This constitutes a solution to the

closure problem.

3.4.2 Boundary-Layer Applications

Generally, the Li's and the necessary boundary conditions are not

known; hence, further progress is made by restricting the class of flows one

tries to describe. Remember the restrictions to this point are: (1) steady

mean flow, (2) constant viscosity, and (3) incompressible.

The largest subclass of flows which have been investigated is two-

dimensional thin-shear layers. Notice these flows are not necessarily bound-

ary layers. For this class of flows, let: VM3 = 0 and the primary flow

direction be X1. Hence,

aVM 1 aVMZ
aXl + ax2 0 (3.48)
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aPM + ( -<VF1 VFZ> + V
axi ax Z

D<VF12 > a
DO ax2

D <VF2 > a
DO aX2

aVM1 )
ax2 /

(+ K /2 L3) a<VF12 > 1 K /2

2 < FM x - 3 Z Kz

2<VF1 VF2> aXZ 3 K3/a x 3L4

(3.49)

(VM12

(3.50)

3 ( + K1/ L3) a<VF > + K/L2 aX2- 3K -1/[3 (v + K 1
/' L3) 0<VFZ> + L2/ 8I 3L K1

2 K3/ 2

3) 3 L4

D<VF1 VF2) =
DO aY

- (VF2 >

(3.51)

(VM3 2 -

(3.52)

[2L + K( / L3) a< VF1 VF2> ]2 / 8X2 -

aVMl K 1 /

5X2 3 L1 <VF1 VF2) (3.53)

Donaldson and Rosenbaum (Ref. 3-9) obtained equations quite similar to these.

The variations (Ref. 3-9) introduced were: L1 = L3, a different L4 and L2, re-

placing K 3 / with < VFi > in Eqs. (3.50 and 3.52) and added an <VF1 VF2 >term
L4

to Eq. (3.53). These minor differences were due to using slightly different as-

sumptions to remove the unwanted correlation terms from the dynamic equations.

Equations 3.48 through 3.53 were solved by Ref. 3-9 for specified initial condi-

tions and zero correlation coefficients at the wall and at the edge of the boundary
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layer. Pressure gradients along the boundary layer were also specified.

Note that the specification of the Li functions and the boundary conditions

made this a boundary layer analysis instead of a free shear layer analysis;

i.e., the basic equations were not changed.

The interesting feature of this boundary layer solution was that prop-

erties not easily predicted were calculated (Ref. 3-10). Specifically, transi-

tion was calculated for arbitrary perturbations imposed on an initially laminar

boundary layer.

3.4.3 Solutions for the Contracted TKE Equation

Recognizing that solving Eqs. (3.48)through (3.53) was not a trivial task,

Mellor and Herring (Ref. 3-9) argued that a nearly isotropic turbulence could

be defined by a limiting form of Eqs. (3.46) and (3.47), namely:

<VFi VFj)= 6ij K3 K1/2 L a a3VMiOxi 8Xj

and

D(K/) a V + 5 K1/2 L3 + K1/2 LZ) aE) (K/2)
DO Xk3 3 aXk

a VMi K3/z
<VFk VFi> aXk / L4

This is gratifying, since an equation like Eq. (3.54) has already been postulated

as a mathematically possible Reynolds stress model. Equations (3.54) and

(3.55) also supply a satisfactory solution to the closure problem, again provid-

ing the Li's are specified.
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The two-dimensional thin shear Layer version of Eqs. (3.54) and (3.55)

is

(VF1 VF2> = - K 1 / 2 L1 aVM (3.56)aX2

and

D a X2 ([K/ (L2 +3 L 3) + 3 aX2 )DO = a X2 3 3 1 

+ K1/2 L ( K3/ (3.57)

From numerical experiments in Ref. 3-6

5
L1 - LZ + L3 (3.58)

Assume v negligible.

D(K/2) a ([K(/2 Li a(K)) +
DO - Zax a( XZ
D L =X23/Z

+ K 1/2 L I ( (3.59)

Equations (3.56) and (3.59) are precisely the same as those obtained

by investigators who postulated physical models for the conservation law con-

trolling the supply of turbulent kinetic energy (Ref. 3-5, p.366).

Now expressions for theLi's must be determined. References 3-6 and

3-9 merely assumed them. Assuming L1 proportional to L4 and recognizing

that (K 3/2/L4) represents the decay rate of turbulent energy, E, Rotta (Ref.
3-8) suggested using an additional transport equation to calculate this

3-21

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HIREC D306102

decay rate. Rather than use strictly empirical information to describe L4,

Rotta (Ref. 3-11) defined L4 in terms of a two-point correlation function. Upon

approximating this correlation function for boundary-layer type flow, a decay

rate was defined and a transport equation for such a decay rate was written.

A similar equation was used by Spalding and associates (Ref. 3-12).

3 3
DE Cl j l E <VFj VFk> aXk - C2

j,k=l j,k=l

(<VFj VFk> aXk- C3 E 2 /K (3.60)

Where Ci's are empirically determined constants.

Boundary conditions must be specified for Eq. (3.60) as well as all other

equations used to represent turbulent transport. Seldom are such conditions

known, but both Refs. 3-9 and 3-11 indicate that reasonably obvious and simpli

boundary condition estirmation lcads to valid flowfield represe,- ,tao-s. CL

course, better answers can be obtained if exact boundary conditions are known.

In summary, the analysis of turbulent kinetic energy which was made

by Rotta (Refs. 3-7 and 3-8) formed the basis of a very powerful tool for de-

scribing turbulent transport. Unfortunately, this work was not utilized by

English-reading investigators until Bradshaw's (Ref. 3-13) and Glushko's (Ref.

3-14) work became known. A convenient review and slight extension of these

works is Ref. 3-15. Since then three types of turbulence models have evolved:

1. Equation (3.55) is solved for K for algebraicly specified
length scales, the Li's.

2. Equation (3.55) is again solved for K and hence, Eq. (3.60)
is used to calculate E; no Li's are necessary.

3. Equations like (3.46) are solved for the components of
<VFi VFj> with either all Li's specified or Eq. (3.60) being
used for L4 and the others specified.
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Models 1 and 2 offer no material advantage over eddy viscosity models,

although they are not much more computationally difficult and they may be

somewhat more accurate.

Model 3 is extremely useful because it offers flexibility to estimate

certain effects with only a minimum of specified boundary conditions. How-

ever, general computation schemes utilizing this technique have not been

extensviely investigated.

Turbulent kinetic energy models may be used to represent both boundary-

layers (Ref. 3-16) and free shear layers (Ref. 3-17), provided that the appropriate

empirical information for either such flow is utilized. A "best" model has not

yet been established, nor is it likely to be. The type of choices of modeling

terms is illustrated by the discussion of Harsha (Ref. 18, p. 357).

It should be remembered the variable density flows and flows for which

non-Cartesian coordinate systems are desirable have not yet been discussed;

they will be in subsequent sections. Note also that for the description of in-

compressible flows, the introduction of the conservation of energy equation is

not necessary.

3.5 FLOWS WITH VARIABLE DENSITY AND COMPOSITION

The procedures which were used to analyze single-component, incom-

pressible flows can conceptually be extended to handle multicomponent, com-

pressible flows. The effect of compressibility in a chemically well-behaved

flow probably will be predictable in the near future; several successful re-

searches have already been reported in this area. However, the inclusion

of complex chemical effects in turbulent kinetic energy models is a long way

from being accomplished, and it is probably not worth the effort to try to do

so.

3-23

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306102

Density can be described with mean pM and fluctuating, pF, components

for a single-component fluid. An analysis using either the philosophy of calcula-

ting the dynamic equations or simply adirectdetermination of all of the moments

of interest would result in a set of ten equations; six like those in Eqs. (3.35)

except for some additional terms on the R-HS and four new ones for the var-

iables <pF VFi> and <pF pF>. If the thermal equation of state is used,

temperature, both mean, TM, and fluctuating, TF, may be used to replace

the density variables. Donaldson et al., (Ref. 3-19) report a set of dynamic

equations and then restrict the set to a simple enough atmospheric shear flow

that a closed set of turbulent correlation equations is obtained. Initial condi-

tions are postulated and the correlation and conservation equations are solved.

Laster (Ref. 3-20) derives the dynamic momentum and continuity equa-

tions, uses a Crocco type energy equation, and restricts the dynamic equations

to a boundary layer type flow to obtain closure. The empirical models assumed

cause Laster's model to be hyperbolic - a situation to be avoided if possible.

Heyman (Ref. 3-21) proposed a somewhat similar model, but one which was

much easier to use. Heyman admits extensive use of empirical data, but

nevertheless reports some very impressive data comparisons.

Another alternative is that the effects of density fluctuations can be

ignored and then models based on incompressible flows can be used directly.

References 3-12, 3-22 and 3-23 report good data comparisons using this phi-

losophy; this is not too surprising. Reference 3-1 p 19, suggested such slight

dependence based on order of magnitude estimates.

Reference 3-24 is a most interesting paper which formulates a very

complete set of dynamic equations. Not only are energy and composition

fluctuations considered, but also magnetic and electrical. This formulation

assumes a boundary-layer type flow; hence, the final set of closed equations

looks like the kinetic energy equation, Eq. (3.36), for which empericial length

scales are to be supplied. However, they obtained extra equations for thermal

and mass diffusion; these equations contained parameters analogous to the
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length scales. They concluded that there were insufficient available data to

estimate these necessary empirical parameters.

3.6 FLOW DESCRIPTIONS WITH NON-CARTESIAN COORDINATES

The real benefit derived from using turbulent kinetic energy models

is that by properly modeling the Reynolds stress tensor, empirical data taken

in one flow geometry can be used directly to describe a different flow geometry.

As the discussion in Section 2 implies this is not a particularly easy task to

accomplish. Furthermore, very few problems are worked through to their

solution in general coordinates; i.e., if there are errors in the general co-

ordinate formulation, they might be "washed out" in a simple problem. Still,

an attempt at a general coordinate formulation has been reported (Ref. 3-9).

An important subclass of coordinates is a cylindrical coordinate system

with axial symmetry. The dynamic equations are appreciably simpler to for-

mulate in such a system, but, if one's attention is limited to two-dimensional,

thin shear layer flows, the physical development of the turbulent kinetic en-

ergy equation can be easily accomplished (see Refs. 3-12 and 3-18). In fact,

the general dynamic equations referenced in the previous paragraph have also

been reduced to those for an axial symmetric coordinate system (Ref. 3-25).

The turbulent kinetic energy models suggested in Refs. 3-12 and 3-22 are

valid for plane and axisymmetric flow.

Some details of the general coordinate formulation are now reviewed

to indicate the type of difficulties encountered in such studies. The Ref. 3-9

formulation of the dynamic equations is in indicial rotation. These equations

are written with the nomenclature of Section 2. They are, for incompressible

flow:

3

P <VF i VFk)>+p i VMNj aj VFi VFk> =

j=l1
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3 avmoi 3
-p Z <VFNj VF9k> azj -p Z <VFNj VF5i>

j=1 j=1

_ZpjL E a <VFNj VF0i VF~k>
Mazj -P Z azjj=1

a <PF VFoi>- a <PF VF6k> +

+ <PF (aVF0ii aA o> + L GImn

8Zm Zn <VFVFi k> 2p

m,n 1l

Notice: (1) Coordinates Z, ZN, Z05 are taken as being identical; (2) both VFNi

and VF5i components of vectors are used in these equations; (3) due to sym-

metery, six equations are represented by Eqs. (3.61); and (4) Eqs. (3.61) are

in terms of the covariant components of the Reynolds stress tensor. To use

Eqs. (3.61), one would first rewrite them in terms of the physical components

of the Reynolds stress tensor. However, since Ref. 3-9 also modeled the cor-

relation terms in the RHS of Eq. (3.61), let us simply study their result -in

covariant form. Also the continuity and momentum equations are written for

completeness.

E aVj 0 (3.62)

j=l

8 vMi 3PCa VMi 3 a PM
P + P VMj 8 Vi

j=l
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3 a
E azj (TN'ji - p <VFNj VFmi>)
j=l

a__ <VF0i VFVk> + L VMNj aj <Vi VFVk>- -
j=1

3 a 3 aV3ok
- L <VFNj VF6k> VMizj -E <VFNj VFi> aZj

j=1 j=1

aZj [L4(VFNm VF0m>l1/2 (GIjm
a <VF0i VF5k> +

aZm
j=1

a <VFNj VF~i> + <VFNj VFk>] +

aZk azi

aTk I (VFNm VF5m>lE a <VFNn VF;i> +

mi azn~~~~~~~~~~~

aZi L4 L <VFNm VFYm>l/2 E
m=l m=l

l<VFNm VF~m>)1/
+ mL4

m=1

<VF0i

(
+ V m,

m,n=l

Gik .
m=l

a <VFNn VF5k>] +
<Zn

<VFNm VFnm>_
3

GImn a <azMazn

<VF9i VF~k> - 2 (<VF5i VF0k>
(L5)

(3.64)

The significant feature is that all geometric effects have been removed once

the length scales are determined in any one experiment. Note that the need for

the introduction of physical components still exists in Eqs. (3.64).
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3.7 SUMMARY

The axial symmetric model for thin, two-dimensional shear layers

is probably the only one that will be used in the near future. Truly complex

three-dimensional turbulent flows can be modeled with Eqs. (3.62) through

(3.64), if sufficient theoretical or experimental work is ever accumulated to

evaluate L4 and L5. A synopsis of this section is given in Table 3-1 by

listing a set of typical TKE models.
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Table 3-1

TYPICAL TKE MODELS FOR FREE SHEAR LAYERS

1. The Prandtl Energy Model (Ref. 3-12)

-<VF1 VF2> = 0.08 (K)1/Z [0.625 XG2] 'VM1 (3.65)axz

where XG2 is a lateral distance between the dimensionless 0.1 and 0.9

velocity levels in the free shear layer.

D(K/2) I [a E a (K/Z)1 (VM 2 P 3/Z
P DO - XZ axZ 0.7 aX2 aX2 L4 2 5G0.6s5XG2)

(3.66)

where

E = 0.08 p (K/2) /E (3.67)

2. Energy Dissipation Model (Ref. 3-12)

-p <VF1 VFZ> = e aVM1 (3.68)
aX2

P DO -X2 0.7 8X2 a(369
DK a [ E )K 1Ia vMl\ 2

P =axz[7+2E ( 2- p E (3.69)

D aX2 1.3 -X-2 + 2.86 E XZ ) - 3.84/P E (3.70)

3. Dynamic Equations with algebraic length scales, Ref. 3-9.

4. Dynamic Equations with another partial differential equation for the decay

of turbulent kinetic energy (Ref. 3-12)

Axisymmetric versions of 1 and 2 are also reported.
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Section 4

EDDY VISCOSITY MODELS

4.1 FREE SHEAR LAYERS

The prediction of shear layer properties for reacting flows requires

empirical eddy viscosity coefficient models be used in order to remain within

practical limits. Even then only parallel flows can be described. In the

process of solving problems such as plume afterburning and jet engine or

rocket plume dissipation, a working principle has evolved for selecting among

the many eddy viscosity models the ones to be applied to particular types of

shear layers.

An eddy viscosity model, which would treat all the mixing problems

encountered, is desirable. This goal has not been achieved. If a single

model must be used for all problems, a choice could of course be made,

but in certain regions or for certain types of flows, the knowledge that a

different eddy viscosity model performs more realistically will invariably

mean that the more realistic model will be used to treat that particular re-

gion or problem. For that reason discussion of empirical eddy viscosity

models should be based upon the kinds of problems a model will be used to

solve.

The eddy viscosity models described will be of the following form

pC = CL(f p U}) (4.1)

where p is the density, c is the turbulent kinematic eddy viscosity, C is an

empirically determined constant, L is a length characteristic of the mixing

and the flpUl implies that the eddy viscosity models are functions of the mass

flux. Laminar mixing can be represented by a special form of this mixing
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model; i.e.,

pC = C1 (4.2)

where C
1

at most can be a function of temperature and composition.

The choice of which form, turbulent or laminar, is determined by the

particular state of the flow being calculated.

4.1.1 Planar Mixing

An eddy viscosity model of the Prandtl type is used to describe the

shear layer which develops between two planar streams, 1 and 2.

= 0.0011 OOllAtmIPlU 1 -PU (4.3)

where At
m

is the thickness of the mixing region. The outer edge of the mixing

region is defined as the position where the mass flux ratio of successive

stream function positions, (piUi)/pi+lUi+l) is 0.999. The inner edge is defined

similarly using the ratio (pi+1 U
i

+ l )/ p i
U

i
. The units onp are slug/ft3 ;one, ft 2 /

sec; onAtm, ft; and on U, ft/sec2 . These units result in a pe product with units

of slug/ft/sec. These can be converted to the more common units of lbf-sec/ft2

by dividing the entire equation by the gravitational constant, gc where

gc = 1 slug-ft/sec2

Note that on occasions eddy viscosity models are listed which have similarf

Note that on occasions eddy viscosity models are listed which have similar

form but greatly different constant values. The most probable explanation

is that a different set of units is used rather than a different magnitude of

eddy viscosity.

Many values of the constant in Eq. (4.3) have appeared over the years.

These relatively small variations have been attributed to better matches of

particular sets of experiments similar to those of interest to the user. The
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constant value 0.0011 in Eq. (4.3) was obtained from studies of mixing and

combusting two-dimensional flows (Ref. 4-1). These are the types of flows

of greatest interest to this particular user, hence the 0.0011 value is rather

arbitrarily listed.

In studies on chemical combustion lasers involving two-dimensional

mixing and combustion, a parametric variation on eddy viscosity models was

run by changing the constant values up to an order of magnitude (Ref. 4-2).

The end result of the mixing and combustion (in this case energy in the in-

verted population state) varied by only 15% of the peak potential power of the

laser. The amount of change for any specific problem is obviously dependent

on the features of the problem. In studying a wide variety of problems, how-

ever, experience has shown that problem modeling has been more important

than minor variations in the value of the constant in the eddy viscosity repre-

sentation. The skill, in setting up the problem (within the often rather severe

restrictions of the mixing analyses) to best describe the real flow process

which occurs, can have a significant effect on the results of the mixing study.

Concisely, one should recognize that a complicated process is being approxi-

mated simply, and should be prepared to accept the results as good indications

of those processes for which they were developed. It should nevertheless be

recognized that a certain degree of the user's judgment is required to interpret

those results properly.

4.1.2 Axisymmetric Mixing

The shear layer which develops as an axisymmetric jet mixes with its

surroundings, whether quiescent or co-flowing, is calculated by using the

combination of two-eddy viscosity models. The first model is applied in the

initial region of the jet where the shear layer is developing. The second

eddy viscosity model is used in the developed region of the flow where no

potential jet core remains. This approach reduces the transition zone to

zero and directly connects the two regions.

4-3

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D306102

The eddy viscosity model recommended for the initial region has the

same form as that suggested for the two-dimensional shear layer but has a

different value for the constant (Ref. 4-3).

pe = 0.01 AtmIPTU - pUJ, (4.5)

This eddy viscosity model is used until the jet centerline properties

have been changed by the mixing (i.e., the potential core region is gone).

The entire mass flux of the jet is then involved in the shear layer. An eddy

viscosity model more suited to thick, developed shear layers is applied for

the remainder of the shear layer calculations. A Ferri eddy viscosity model

is used to predict this regime. The Ferri model has the form

pe = 0.018 rl/2 IOUOO - PLUI (4.6)

where the r 1/2 value is the radial location in feet at which the local pU product

is

pU = 1/2 (pU +pUj,) (4.7)

Recalling Eq. (4.1) and Eq. (4.5), the form of Eq. (4.6) can be altered

to make the changeover of eddy viscosity models appear less abrupt. Re-

writing Eq. (4.6) in the form of Eq. (4.1),

pE = 0.01 (1.8 r 1 / 2 ) POOUc00 - pkUqj (4.8)

A balanced axisymmetric jet mixing region is sketched in Fig. 4-1

At the end of the potential core region the At
m

for a balanced jet (to which the

equations describing the mixing, restrict in the strict sense all mixing calcu-

lations) is approximately two radii thick. From Eq. (4.8) the (1.8 rl1 / 2 ) factor

makes the switchover of eddy viscosity models appear to be more consistent.

The eddy viscosity model used in the initial region is most applicable for

relatively thin shear layers. Questions arise as one continues to use this
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Fig. 4-1 - Balanced Axisymmetric Jet Mixing Region

model until either the entire potential core region has disappeared or the model

predicts a viscosity level equal to the Ferri model for the developed region.

Values in the vicinity of the transition from the initial region to the developed

region should be judiciously considered because of the assumption of zero

transition length. If the area of interest lies in the transition zone, some

error estimates should be placed on the answers.

Any shear layer predictions close to the starting of the calculation should

be viewed with caution. The discrimination of the edges of the mixing region

are greatly influenced by the grid size in the first few steps of the calculation.

If a simple case of a uniform jet and external flow is being considered, the

thickness of the mixing zone is forced to be (at least) one grid size thick. This

mixing zone thickness is unfortunately a function of the numerical scheme of

solution and not of the physical processes. As the calculation proceeds down-

stream, the viscous action replaces the grid size as the driving function of the

thickness of the mixing zone.

As a working rule, the mixing calculation results are of the greatest

value in that ambiguous region, sufficiently far downstream of the initial

region and not so far downstream to have lost all influence of the input

conditions.
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Since the recommended models were developed by matching experi-

mental data, the models have been used with success to treat even com-

busting flows. Because of the difficulty of realistically relating turbulent

shear stress energy levels and the combustion processes, the empirical

eddy viscosity model will probably continue to be used for a considerable

period when combusting mixing processes are calculated.

4.2 BOUNDARY LAYERS

Boundary layer flows have been calculated using eddy viscosity coeffi-

cients. One of the more successful models, Cebeci's extended eddy viscosity

model (Ref. 4-4), uses a two-layer representation of the eddy viscosity. In

the inner region, closer to the wall, the eddy viscosity is based on Prandtl's

mixing length theory, as modified by Van Driest, to account for the damping

effect of the wall, and as extended by Cebeci to include wall mass transfer,

compressibility and pressure gradient effects. The eddy viscosity in the

inner region is given by

aI? (4.9)

where the mixing length, I, is

I = 0.4 Y [1 - exp(-Y/A)] (4.10)

the Van Driest damping factor A is defined as

A 26 (4.11)
(w P)/2 N

and the factor N which accounts for pressure gradient and mass transfer

effects is given by

2 dP 1 11.8 (PV)w A w 11.8 (PV)w (.w
N 1 - exp 1/2 + exp 1/2 (4.12)

dX (PV)w (w Pw w) (Pw Tw) 
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If (V)w equals zero N is calculated as

N2=I1 d-P~' -Ow
)

-
1 /2N = 1+11.8 p (I (4.13)

dX 

In the outer, wake-like, portion of the boundary layer, Clauser's form of the

eddy viscosity, modified to include an intermittency factor, is used. The

outer eddy viscosity is given by

= 0.0168 U [f( -_ dY + 5.5 (Y/6) (4.14)
o 

=
Ue

where the term in brackets is an approximation to Klebanoff's error function

intermittency relationship.

The eddy viscosity for the inner region is used from the wall outward

until the height at which E = i is reached. From that point to the boundary

layer edge the outer expression for eddy viscosity is utilized.
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Section 5

CONCLUSIONS AND RECOMMENDATIONS

The work reviewed in this report leads one to the following conclusions.

1. Use of the dynamic equations for single-point correlations
and of a transport equation for the mixing length as defined
by a two-point correlation is a major improvement in tur-
bulence models.

2. Insufficient results are presently available to exploit fully
the models mentioned in Conclusion (1).

3. Present simple turbulent kinetic-energy models offer no
significant advantage over eddy-viscosity models for free-
shear layers.

4. The only possible advantages which TKE models could
offer for free shear layers is to predict a realistic lateral
and streamwise variation of mixing rates. Such variations
could be used empirically with eddy-viscosity models, if
good experimental shear layer descriptions existed. These
statements are particularly true for combusting jet flows.

5. As a first step, intermittence factors which have been
evaluated for boundary layer flow, could be used directly
in eddy viscosity models.

The following recommendations are offered.

1. Those interested in turbulent mixing calculations should
stay abreast of TKE model development.

2. Eddy viscosity models which vary laterally should be de-
veloped and their behavior investigated, particularly for
combusting flows.
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